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Abstract In this paper, we present a multi-scale optimization model and an entropy-
based genetic algorithm for molecular docking. In this model, we introduce to the
refined docking design a concept of residue groups based on induced-fit and adopt a
combination of conformations in different scales. A new iteration scheme, in conjunc-
tion with multi-population evolution strategy, entropy-based searching technique with
narrowing down space and the quasi-exact penalty function, is developed to address the
optimization problem for molecular docking. A new docking program that accounts
for protein flexibility has also been developed. The docking results indicate that the
method can be efficiently employed in structure-based drug design.

Keywords Information entropy · Genetic algorithm · Molecular docking ·
Multi-scale optimization model · Residue groups

1 Introduction

Structure-based drug design (SBDD) is pivotal technique to drug discovery. It came
into existence in the early 1980s as a result of multidisciplinary efforts. The techniques
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in this field are by no means yet mature. However they developed quickly and there
have been a lot of successes to date. It is widely accepted that drug discovery research
has become increasingly data intensive and require more informatics tools to enhance
the process. Novel theoretical approaches could become a major avenue for drug
discovery efforts at the post-genomic era. Molecular docking serves as a main method
of SBDD to simulate the interactions of two molecules (such as ligand and receptor)
and to predict their binding mode and affinity. In recent years, molecular docking
has emerged as an important technology in the field. A fundamental problem with
molecular docking is that orientation space is very large and grows combinatorially
with the number of degrees of freedom of the interacting molecules. Therefore, simpler
and efficient methods are continuously being researched into.

Over the past two decades, many automated docking approaches have been deve-
loped and can be roughly divided into rigid-docking, flexible ligand-docking and
flexible protein-docking methods. The rigid-docking methods, such as the previous
DOCK program [1], treat both ligands and proteins as rigid. In contrast, ligands are
considered flexible and proteins rigid for flexible ligand-docking methods, including
evolutionary algorithms [2, 3], simulated annealing [4], the fragment based approach
[5], and other algorithms [6–8]. Despite the diversity of the scoring functions and
search algorithms used in these methods, they are either flexible or rigid docking
methods. The consideration of protein flexibility is less advanced than that of ligand
flexibility. Protein flexibility has been ignored in most docking programs since the eva-
luation of protein-ligand interaction energies at all possible docking configurations is
a prohibitively time-consuming process. However, it has become increasingly clear
that protein flexibility plays a paramount role in protein-ligand complex formation
and should be considered during the docking process [9, 10].

Molecular docking is a difficult optimization problem. It contains a large number
of design variables. The objective function is a highly nonlinear function, and it is
an implicit function of the design variables. To solve it may involve a costly compu-
tational effort. However, multi-scale methods can lead to efficient solution schemes
for overcoming these difficulties. The multi-scale method relies on a construct known
as space decomposition. This involves the application of a scaling operation to the
original data. The effect of the scaling operator is to remove the information in the
data corresponding to the highest level of detail. As fine detail is removed, the larger
scale features in the data are emphasized. Repeated application of the scaling operator
returns increasingly larger structures in the data until either the required scale has
been achieved, or there is no more information left in the resulting decomposition.
The selection of the scaling operator is of crucial importance if multi-scale analysis
via scale-space decomposition is to be completed successfully. We can consider the
conformational changes of the ligand and the receptor with these different scales and
elucidate a more effective and efficient multi-scale docking method.

In the present report, we establish a multi-scale optimization model for molecular
docking, through the introduction of the concept of the residue groups in the recep-
tor. This model includes both current semi-flexibility docking and refined docking. An
entropy-based genetic algorithm is developed to solve the optimization model of mole-
cular docking. The algorithm proposes a new iteration scheme in conjunction with the
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multi-population evolution, entropy-based searching technique with narrowing down
space and the quasi-exact penalty function.

In order to evaluate the new optimization model and docking method, we have
conducted a numerical experiment with 52 protein-ligand complexes from the publicly
available GOLD test set [2]. Comparisons with four docking programs, namely Glide
[11], GOLD [2], FlexX [5] and DOCK6 [1, 12], show that docking accuracy has been
significantly improved by the new model and algorithm.

2 Multi-scale optimization model for molecular docking

2.1 Coarse-scale optimization model for molecular docking

Molecular docking is fundamentally an optimization problem of predicting the inter-
action energy between small organic molecules and biological receptors. Mathemati-
cally, it can be written as follows

min f (d)
s.t. g j (d) ≤ 0, j = 1, 2, . . . , q

(1)

where d is a vector of design variables that is comprised of the state variables of
molecules. The objective function f (d) is the interaction energy between ligand and
protein.

We assume that the ligand being studied is flexible and the corresponding receptor
is rigid. The design variable d can then be described as follows

d = {
Tx , Ty, Tz, Rx , Ry, Rz, Tb1, Tb2, . . . , Tbn

}T (2)

where Tx , Ty, Tz, Rx , Ry, Rz are the position coordinates and rotational angles of
the anchor for the matching-based orientation search, and Tb1, Tb2, . . . , Tbn are the
torsional angles of the rotatable bonds required for flexible ligand docking.

The objective function f (d) consists of the Coulomb and van der Waals terms of
force field functions:

f (d) =
nlig∑

i=1

nrec∑

j=1

(
Ai j

r12
i j

− Bi j

r6
i j

+ 332.0
qi q j

Dri j

)

(3)

where each term is a double sum over the ligand atom i and the receptor atom j ,
nlig, nrec are the number of atoms in the ligand and the receptor, respectively; Ai j , Bi j

are van der Waals repulsion and attraction parameters, ri j is the distance between atoms
i and j , qi , q j are the point charges on atoms i and j , D is dielectric function, and 332.0
is a factor that converts the electrostatic energy into kilocalories per mole. Equation 3
contains the intermolecular terms present in the AMBER [13] molecular mechanics
function, except for an explicit hydrogen-bonding term. We assume that hydrogen
bond energies can largely be accounted for in the electrostatic term.
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The constraints g j (d), j = 1, 2, . . . , q may be represented as the size limits of
the design variables and certain behavior constraints of the molecule exist such as ’the
rule of 5′ [14], i.e., they are less than 5 H-bond donors, 10 H-bond acceptors, and the
molecular weight (MWT) is less than 500 and the Log P (CLogP) is less than 5 (or
MlogP is less than 4.15), and so on. The constraints are here the size limits of the
design variables only and shown as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Tx ≤ Tx ≤ Tx

Ty ≤ Ty ≤ Ty

Tz ≤ Tz ≤ Tz

−π ≤ angle ≤ π, angle = Rx , Ry, Rz, Tb1, . . . , Tbn

(4)

In the protein-ligand docking process, the binding free energy is a function of
the Cartesian coordinates of the ligand atoms only. The Cartesian coordinates of
all ligand atoms can be determined by solving the optimization problem shown in
Eq. 1. This indicates that the optimal conformation of a flexible ligand is deter-
mined by translational (Tx , Ty, Tz), rotational (Rx , Ry, Rz) and torsional motions
(Tbi , i = 1, 2, . . . , n, n is the number of torsion bonds). The former variables, which
account for the six degrees of freedom for a rigid body, can also be interpreted as the
orientation of the ligand; Tbi is the angle of the i th flexible bond. Since the movement
of the ligand should be limited in a pocket confined to the active site of the receptor,
the design space of (Tx , Ty, Tz) is defined as a cuboid circumscribed in the pocket.
(Tx , Ty, Tz) and (Tx , Ty, Tz) are the minimum and maximum Cartesian coordinates of
the circumscribed cuboid. The defined design space not only ensures that the ligand
can move freely within the binding pocket, but also cuts down on computational costs
by avoiding the complexity of resolving the actual boundary. The remaining variables
are allowed to vary between −π and π rad.

2.2 Refined-scale optimization model for molecular docking

In the above model (Eqs. 1–4), we only consider the ligand flexibility. However,
changes in the receptor structure upon ligand binding are frequently observed [15],
and as such, both the structure of the ligand and the receptor change during the binding
process.

The rapid development of increasingly powerful computational methods is making
it possible to consider protein flexibility in docking programs. In order to fully cla-
rify this notion, we cite the following approaches that consider the receptor flexi-
bility in docking process. One such approach involves the use of conformational
ensembles to generate energy-weighted or geometry-weighted average grids [16, 17],
which require several conformationally distinct protein structures. Other commonly-
used approaches include the sampling of predetermined side chain rotamer libraries
[18, 19], the construction of protein structures using discrete protein conformations
[20] or molecular modeling [21], the use of relaxed complex methods based on mole-
cular dynamics [22, 23], and the use of soft docking [24].
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We introduced the concept of the residue groups in the receptor. The residues within
the binding site are divided into several residue groups, and the center coordinates of
each residue group introduced into the optimization process as design variables. Thus
we establish a refined-scale optimization model based on the problem (1), and added
the following design variables:

{
C1x ,C1y,C1z, . . . ,Cmx ,Cmy,Cmz

}T (5)

where m is the number of residue groups, and (Cix ,Ciy,Ciz) (i = 1, 2, . . . ,m) are
the positional coordinates of the center for each residue group. And the constraints
added are introduced into g(d) as:

⎧
⎨

⎩

Cix ≤ Cix ≤ Cix i = 1, . . . ,m
Ciy ≤ Ciy ≤ Ciy i = 1, . . . ,m
Ciz ≤ Ciz ≤ Ciz i = 1, . . . ,m

(6)

3 Entropy-based adaptive genetic algorithm for molecular docking

The objective function of problem (1) is nonlinear and implicit function of the design
variables and the design space is non-convex, the sensitivity analysis is very difficult.
There is a critical need to study alternate strategies for optimal design that are not
susceptible to the pitfalls of methods of nonlinear programming. Genetic algorithms
provide such a capability, and their successful adaptation and implementation in a
series of optimal design problems. The principal advantages of the genetic algorithms
reside in the fact that no sensitivity analysis is required and global optimal solution can
be obtained. In addition, genetic algorithms also have advantages such as simple for-
mulation, easy programming. But genetic search process is the time-consuming work,
so that hindered them from applied to multi-scale molecular docking optimization pro-
blems, especially to massively among a virtual library of billions of small molecules
for compounds that can bind to known protein binding sites. In such circumstances,
a new method is here proposed, in which an entropy-based searching technique with
multi-population and the quasi-exactness penalty function are developed to ensure
rapid and steady convergence.

It is very difficult to solve the problem (1) directly due to the much more constraints.
In order to solve it efficiently, we transform the constrained optimization model into
unconstrained model.

3.1 Transformation of the optimization model

First, we introduce some definitions and theorems.
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Definition 1 If ψ is a positive real variable, and G = {
g j (d)

}
, j = 1, . . . , q, is a set

of constraint functions, then

E(G) = (1/ψ) ln
q∑

j=1

exp(ψg j (d)) (7)

is a parametric constraint evaluation (PCE) function. The optimization problem (1) is
transformed into the following model by means of PCE function:

min f (d)

s.t. gψ(d) = (1/ψ) ln
q∑

j=1
exp(ψg j (d)) ≤ 0 (8)

Definition 2 If, for any G(d) = {
g1(d), g2(d), . . . , gq(d)

}
, and G(d) ={

g1(d), g2(d), . . . , gq(d)
}
, G(d),G(d) ∈ Eq with g j (d) ≤ g j (d), j = 1, 2, . . . , q,

and there exists at least one j0, (1 ≤ j0 ≤ q), such that g j0(d) < g j0(d), then
G(d) ≤ G(d) or, simply G ≤ G.

Definition 3 If, for any, G,G ∈ Eq , with G ≤ G, E(G) < E(G), then E(G) is a
strictly monotone increasing function of G.

Lemma 1 The PCE function E(G) is a strictly monotone increasing function of G,
and if ψ → ∞ then

(1/ψ) ln
q∑

j=1

exp(ψg j (d)) = max g j (d) j = 1, 2, . . . , q (9)

Proof Let

G = {
g j (d)

} ≤ G = {
g j (d)

}
, j = 1, 2, . . . , q (10)

By Definition 2

g j (d) ≤ g j (d), j = 1, 2, . . . , q (11)

and there exists at least one j0(1 ≤ j0 ≤ q) such that

g j0(d) < g j0(d) (12)

Then for ψ > 0,

ψg j0(d) < ψg j0(d) (13)

exp(ψg j0(d)) < exp(ψg j0(d)) (14)
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Hence

q∑

j=1

exp(ψg j (d)) <
q∑

j=1

exp(ψg j (d)) (15)

Taking logarithms on both sides and dividing by ψ

E(G) = (1/ψ) ln
q∑

j=1

exp(ψg j (d)) < (1/ψ) ln
q∑

j=1

exp(ψg j (d)) (16)

i.e. E(G) is a strictly monotone increasing function of increasing function of G. The
ψ norm of the q-dimensional vector

EG =
{

eg1(d), eg2(d), . . . , egq (d)
}T

(17)

is given by

Nψ(EG) =
⎛

⎝
q∑

j=1

eψg j (d)

⎞

⎠

(1/ψ)

(18)

The uniform norm, also called the maximum norm, is defined by

N∞(EG) = lim
ψ→∞ Nψ(EG) (19)

Since eg j (d) > 0 by Jensen’s inequality, the norm is a strictly monotone decreasing
function of its order, i.e.

Ns < Nr for r < s (20)

The importance of this inequality is that it holds also in the limit as s → ∞. Thus,
Eq. 19 may be written as

N∞ (EG) = max
(

eg j (d)
)
< Nr(EG) (21)

Taking logarithms on both side of Eq. 21 and substituting from Eqs. 18 and 19 gives

lim
ψ→∞(1/ψ) ln

q∑

j=1

exp(ψg j (d)) = max(g j (d)) (22)

and the proof is completed.
The PCE function plays an important role in the proposed method. The following

theorem aids understanding of its properties.
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Theorem 1 If ψ → ∞, then the optimization problem (1) and

min f (d)

s.t. gψ(d) = (1/ψ) ln
q∑

j=1
exp(ψg j (d)) ≤ 0 (23)

have the same Kuhn-Tucker points.

Proof The Lagrange augmented function problem (23) is

L(d, µ) = f (d)+ (µ/ψ) ln
q∑

j=1

exp(ψg j (d)) (24)

whereµ > 0 is the Lagrange multiplier of corresponding constraint. The Kuhn-Tucker
condition for problem (23) is given as

∂ f (d)/∂di+(µ/ψ)
⎧
⎨

⎩

q∑

j=1

exp(ψg j (d)) · ∂g j (d)/∂di

⎫
⎬

⎭

/ q∑

j=1

exp
[
ψg j (d)

] = 0 (25)

(1/ψ) ln
q∑

j=1

exp
(
ψg j (d)

) ≤ 0 (26)

(µ/ψ) ln
q∑

j=1

exp
(
ψg j (d)

) = 0, µ ≥ 0 (27)

By means of Lemma 1 and Eq. 26, if ψ → ∞, then

(1/ψ) ln
q∑

j=1

exp(ψg j (d)) = max g j (d) ≤ 0 , j = 1, 2, . . . , q (28)

i.e.

g j (d) ≤ 0 (29)

Substituting

µ = ψ, µ j = exp
[
ψg j (d)

]

∑q
j=1 exp

[
ψg j (d)

] (30)
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into Eq. 25 gives

∂ f (d)
∂di

+
q∑

j=1

µ j
∂g j (d)
∂di

= 0 (31)

Combining Eqs. 27 and 30, if ψ → ∞, then

{
g j (d) = 0 if µ j > 0
g j (d) < 0 if µ j = 0

(32)

Equations 29, 31 and 32 are identical the Kuhn-Tucker condition of the problem (1).
Hence the problems (23) and (1) have the same Kuhn-Tucker points and vice versa.
The theorem is proved.

Kuhn-Tucker points are obtained by solving the Kuhn-Tucker conditions, which
are necessary condition for the optimum solution of non-linear programming with
equality and inequality constraints [25]. Theorem 1 shows that to solve problem (1)
with multi constraints can be substituted by solving a simple problem (23) with a
single constraint only. Unlike some optimality criteria methods, there is no need to
find active constraints. The µ j in Eq. 30 can give the active level of the constraints.

Problem (23) can be solved by using quasi-exact penalty function:

ϕψ(d) = f (d)+ (α/ψ) ln

{

1 +
q∑

i=1

exp(ψgi (d))

}

(33)

the parameter ψ can be chosen in the range 103 − 105 and α > 0 is penalty factor.
Fitness function of genetic algorithm by means of Eq. 33 may be written as:

max F(d) = C − ϕψ(d) (34)

Problem (34) can be solved as an evolutionary design model, in which F(d) is the
fitness function, C is a large positive number to ensure F > 0.

3.2 Entropy-based adaptive genetic algorithm

Genetic algorithm (GA) was formally introduced in the 1970s by John Holland [26],
which uses ideas based on natural genetics and biological evolution. The three most
important aspects of using genetic algorithm are: the fitness function, the genetic
representation, and the definition and implementation of the genetic operators. Some
molecular docking programs are based on GA such as GOLD [2].

Based on the traditional genetic algorithm, we develop an entropy-based adaptive
genetic algorithm. A new iteration scheme in conjunction with multi-population gene-
tic strategy and an entropy-based searching technique is developed to search optimal
molecular orientation and conformation. The elitist maintaining strategy and efficient
convergent rule are used to close the global solution, and the contracted space is
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employed as convergence criterion instead of the genetic generations used in the most
of the genetic algorithms, so that docking time is dramatically decreased. Further-
more, a novel adaptive strategy is employed; the probabilities of the crossover and
mutation operators are optimized as the added design variables in the evolution pro-
cess. These strategies can speed up the optimizing process and ensure very rapid and
steady convergence.

3.2.1 Multi-population genetic strategy

Multi-population genetic strategy is used in our algorithm to keep diversity among
different populations and avoid premature problem to some extent. That is, M popu-
lations, each containing N individuals, are generated randomly with all the same
searching space. Selection and mutation operations for each population are performed
independently while crossover operation is carried out between different populations.

For multi-population evolution, the genetic algorithm begins from generating arbi-
trarily M populations with all the same searching space, i.e. initial design space. If
Fj (d)( j = 1, . . . ,M) represent that the best value of the fitness function occurs in
the j th population, then we need to maximum Fj (d)( j = 1, . . . ,M) by means of a
genetic search, i.e. to solve the following optimum problem:

min − Fj (d), j = 1, 2, . . . ,M (35)

Problem (35) is a multi-objective optimization, which is very difficult to solve com-
pletely.

3.2.2 Entropy-based searching technique

Shannon’s theorem [27, 28] has wide-ranging applications in both communications
and data storage applications. This theorem is of foundational importance to the
modern field of information theory. There are similarities between the process of
optimization and communication of information theory.

By information entropy principle, an entropy-based optimization model can be
constructed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min −
M∑

j=1
p j Fj (d)

min H = −
M∑

j=1
p j ln(p j )

s.t.
M∑

j=1
p j = 1, p j ∈ [0, 1]

(36)

where H is the information entropy, p j is here defined as a probability that the optimal
solution of the problem (35) occurs in the population j . It can easily be proved that the
optimization problem (35) and (36) both have the same optimal solution. The solution
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p j of Eq. 36 can be obtained explicitly.

p∗
j = exp(γ Fj (d))

/ M∑

j=1

exp(γ Fj (d)) (37)

in which

γ = (β − 1) /β (38)

γ is here called as the quasi-weight coefficient. The 1 − p j can be used as the
coefficients of narrowing searching space in the modified genetic algorithm. For
the genetic algorithm with narrowing of the search space, we need only to know
the efficient narrowing coefficients for the searched space.

Using multi-population evolution with narrowing down space, M populations with
N members are generated in the given space. Note that the design space is defined
as initial searching space S(0). During genetic evolution, the searching space of each
population is narrowed according to the following equation:

S(K ) = (1 − p j )S(K − 1)

di (K ) = max
{[

d∗
i (K )− 0.5(1 − p j )S(K )

]
, di (0)

}

di (K ) = min
{[

d∗
i (K )+ 0.5(1 − p j )S(K )

]
, di (0)

} (39)

where di (K ) and di (K ) are the modified lower and upper limits of i th design variable
at K thiteration, respectively. d∗

i (K ) is the value of design variable i of the best member
in the population j .

The traditional termination of genetic algorithm may be determined by some cri-
teria, e.g., a prescribed maximum number of generations or function evaluations, or a
preset precision for the optimum. Here, the narrowed searching space is regarded as
the terminal criteria. Equation 39 is employed to control the narrowing of design space
for each population. If

(
1 − p∗

l

) = 0, the optimal solution occurs in the lth popula-
tion, and its searching space is not narrowing. Then the convergence criterion of the
proposed method can be defined as: when the searching space in the best population
has been reduced to a very small area (a given tolerance), the global optimal solution
can be obtained approximately.

Entropy-based searching technique with narrowing down space is taken to control
the size of searching space, and the contracted space is employed as convergence cri-
terion to terminate the evolution process so that it can speed up the convergence to
obtain the optimal solution.

3.2.3 Adaptive strategy

In traditional genetic algorithm, the probabilities pc and pm of the crossover and muta-
tion operators must be provided and are generally provided as initial data. However,
these genetic parameters can make the convergence of the algorithm slow and unsteady
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if they are not appropriately defined. Here the probabilities pc and pm are assigned
to be the added design variables to overcome the difficulty in confirming the genetic
parameters. The lower and upper limits of pc and pm can be defined in a reasonable
region (here 0.7 ≤ pc ≤ 1.0, 0.0 ≤ pm ≤ 0.1).

3.2.4 Algorithm organization

The algorithm consists of the following steps:
Step 1. Generate M initial populations and implement the duplicate operator.
Step 2. Perform genetic operators among populations.
Step 3. Narrow down the design spaces of each population and find the best indivi-

dual; reserve according to the elitist strategy. Next, check the convergence to ensure
that the searching space in the best population has been reduced to the given tolerance.
If it has, go to step 4; otherwise, return to step 2.

Step 4. Output the optimization results and stop.

4 Computational performance

4.1 Test data set

A subset of the GOLD data set, originally proposed by Jones et al. [2], was chosen to
exam our method. Each complex was separated into a probe molecule and a docking
ligand according to the biological interacting pairs. Each protein molecule was obtai-
ned by excluding all structural water molecules, ligands, cofactors, and metal ions
from the receptor pdb file. Next, a mol2 file was generated by the addition of requisite
hydrogen atoms and Kollman charge using Sybyl6.8 [29]. Residues around the bound
ligand within a radius of 6.5 Å were isolated from the protein, to define the active site.
The ligands were then prepared by adding hydrogen atoms and Gasteiger-Marsili ato-
mic charges adopted in Sybyl6.8 [29]. The rotatable bonds of the ligands ranged widely
from 0 to 25, with greater than 88% of the ligands possessing less than 15 such bonds.

Based on the coarse and refined-scale optimization models and algorithms, we
developed a new molecular docking program. According to test the proposed docking
method, docking accuracy and the efficiency are selected as the primary evaluating
criteria [30].

4.2 Docking accuracy

The key characteristic of a good docking program is its ability to reproduce the expe-
rimental binding modes of ligands [31]. The success of a docking algorithm in pre-
dicting a ligand-binding pose is normally measured in terms of the root-mean-square
deviation (RMSD) between the experimentally observed heavy-atom positions of the
ligands and the ones predicted by the algorithm [32]. The RMSD is defined as:
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{
N∑

i=1

[
(x0

i − xi )
2 + (y0

i − yi )
2 + (z0

i − zi )
2
]/

N

}1/2

(40)

where N is the heavy atom number of a ligand, and (x0
i , y0

i , z0
i ) and (xi , yi , zi ) are

the coordinates of the i th atom of X-ray crystal and docked structures, respectively.
In general, the docking accuracy is acceptable if the RMSD value between the docked
model and X-ray crystal structure is less than 2.0 Å.

Tables 1 and 2 summarize the performance of the two multi-scale docking methods
against the 52-complex dataset. The refined-scale approach is significantly better than
the coarse-scale approach. As shown, the refined-scale docking program yielded a
57.7% excellent result with a RMSD values below 1.0 Å. Nearly 90.4% of the results
are within 2.0 Å. For the coarse-scale approach, 46.2% of the solutions have a RMSD
below 1.0 Å and 65.4% of the solutions have a RMSD within 2.0 Å. Further, docking
accuracy decreases with increasing ligand flexibility. For example, for refined-scale
docking, there are 73.7% results with RMSD values below 1.0 Å for ligands with 0 to
4 rotatable bonds, while this value is 54.5% for ligands with 5 to 9 rotatable bonds.

Table 3 shows the heavy-atom RMSD of the best scored (lowest-energy) results,
where the values of Glide, GOLD and FlexX, were obtained from Friesner et al. [11],
Jones et al. [2], Kramer et al. [5], respectively. And the values of DOCK6 were got

Table 1 Results for our program based on the coarse-scale model

Nrot
a Ncomplexes

b Ncomplexes having an RMSD in the listed range (Å)

≤0.5 >0.5, ≤1.0 >1.0, ≤1.5 >1.5, ≤2.0 >2.0, ≤3.0 >3.0

0–4 19 6 6 2 0 4 1
5–9 22 5 3 3 3 4 4
10–14 5 1 1 2 0 0 1
15–19 2 1 1 0 0 0 0
20–24 2 0 0 0 0 0 2
25–29 2 0 0 0 0 0 2
a Number of rotatable bonds in the ligands
b Number of complexes

Table 2 Results for our program based on the refined-scale model

Nrot
a Ncomplexes

b Ncomplexes having an RMSD in the listed range (Å)

≤0.5 >0.5, ≤1.0 >1.0, ≤1.5 >1.5, ≤2.0 >2.0, ≤3.0 >3.0

0–4 19 9 5 3 2 0 0
5–9 22 6 6 4 4 1 1
10–14 5 2 1 2 0 0 0
15–19 2 1 0 0 1 0 0
20–24 2 0 0 0 0 1 1
25–29 2 0 0 0 1 0 1
a Number of rotatable bonds in the ligands
b Number of complexes
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Table 3 RMSD values of the docking results with the best scores for each method

PDB code This papera Glideb GOLDc FlexXd DOCK6e

Coarse-scale Refined-scale

1ABE 0.24 0.39 0.17 0.86 1.16 0.15
1ACJ 0.37 0.29 0.28 4 0.49 0.26
1ACM 0.92 0.70 0.29 0.81 1.39 1.40
1AHA 0.29 0.20 0.11 0.51 0.56 0.21
1AZM 0.57 0.25 1.87 2.52 2.37 1.00
1BAF 3.63 1.78 0.76 6.12 8.27 3.79
1CBX 0.26 0.28 0.36 0.54 1.35 1.32
1COY 0.44 0.38 0.28 0.86 1.06 0.28
1CPS 0.32 0.34 3 0.84 0.99 0.43
1DBB 1.17 0.69 0.41 1.17 0.81 0.63
1DBJ 0.52 0.32 0.2 0.72 1.22 1.80
1DID 0.41 0.23 3.82 3.72 4.22 2.78
1DIE 2.2 1.22 0.79 1.03 4.71 2.08
1DR1 0.77 0.75 1.47 1.41 5.64 1.01
1EED 6.24 1.65 5.9 12.43 9.78 7.19
1EPB 1.87 0.67 1.78 2.08 2.77 2.35
1ETA 8.98 2.49 2.92 11.21 8.46 4.42
1ETR 6.34 0.81 1.48 4.23 7.24 5.13
1FKG 0.27 0.44 1.25 1.81 7.59 5.37
1FKI 2.62 1.12 1.92 0.71 0.59 4.13
1GLP 1.35 0.41 0.29 1.35 6.43 0.85
1HEF 4.23 2.25 5.3 1.87 15.32 5.09
1HYT 0.44 0.32 0.28 1.1 1.62 3.99
1ICN 0.86 1.80 2.34 8.63 10.52 6.64
1IDA 0.34 0.28 11.88 12.12 11.95 6.59
1IVE 2.66 1.15 2.61 2.16 5.34 1.79
1LDM 1.42 1.15 0.3 1 0.74 1.79
1LST 0.13 0.21 0.14 0.87 0.71 0.62
1MCR 2.16 1.54 4.33 6.23 10.04 1.95
1MDR 0.58 1.51 0.52 0.36 0.88 1.89
1MRK 0.69 0.52 1.2 1.01 3.55 1.61
1MUP 0.50 0.47 4.37 3.96 3.82 3.14
1PBD 3.52 0.26 0.21 0.57 0.33 0.79
1PHG 2.14 1.96 4.32 1.35 4.74 5.48
1POC 15.37 3.43 5.09 1.27 9.25 4.45
1RNE 13.20 6.68 10.08 2 12.24 1.51
1ROB 1.48 1.69 1.85 3.75 7.7 0.88
1SLT 1.44 1.02 0.51 0.78 1.63 4.07
1SRJ 3.40 1.22 0.58 0.42 2.36 2.04
1STP 5.66 3.25 0.59 0.69 0.65 0.32
1TDB 2.12 0.93 1.46 10.48 10.1 1.91
1XID 1.78 0.3 4.3 0.92 2.01 3.52
1XIE 2.32 0.56 3.86 0.69 1.94 3.11
2PHH 0.64 0.64 0.38 0.72 0.43 1.52
2SIM 0.86 1.26 0.92 0.92 1.99 0.99
2YHX 1.50 1.37 3.84 1.19 2.25 4.96
3PTB 2.11 0.74 0.27 0.96 0.55 1.38
4CTS 0.85 0.3 0.19 1.57 1.53 1.49
4FAB 0.92 0.59 4.5 5.69 4.95 1.11
6ABP 0.33 0.69 0.4 1.08 1.12 0.26
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Table 3 continued

PDB code This papera Glideb GOLDc FlexXd DOCK6e

Coarse-scale Refined-scale

6RNT 1.29 1.45 2.22 1.2 4.79 2.86
8GCH 1.51 1.74 0.3 0.86 8.91 3.29

a Best pose (Å) for energy score, not the best result corresponding to RMSD
b The results of Friesner and co-workers [11]
c The results of Jones and co-workers [2]
d The results of Kramer and co-workers [5]
e The results by running DOCK6 [1, 12] with the default parameter setting

Table 4 Comparisons with Glide, GOLD, FlexX, and DOCK6 for the docking accuracy with varying
RMSD range

RMSD (Å) Number of complexes

Coarse-scale Refined-scale Glide GOLD FlexX DOCK6

≤0.5 13 18 18 2 3 7
>0.5, ≤1.0 11 12 7 19 9 7
>1.0, ≤1.5 7 9 5 11 6 6
>1.5, ≤2.0 3 8 4 4 5 9
>2.0, ≤2.5 6 2 2 2 4 3
>2.5, ≤3.0 2 2 3 1 1 2
>3.0, ≤3.5 1 0 0 0 0 3
≥ 3.5 9 1 13 13 24 15

with the default parameter setting. Since each method adopted different scoring func-
tions, their docking abilities could not be directly compared by the reported RMSD
values in Table 3. However, all reported RMSD values of the well-known methods
could be used as a baseline for evaluating the performance of our method. Table 4 and
Fig. 1 show the comparisons with other programs, providing the numbers of ligands
having an RMSD in various ranges. In 47 (90.4%) of 52 cases, our program (refined-
scale) returned a pose within 2.0 Å RMSD, while Glide, GOLD, FlexX, and DOCK6
returned 34 (65.4%), 36 (69.2%), 23 (44.2%), and 29 (55.8%) cases below 2.0 Å, res-
pectively. Additionally, Table 5 presents the comparisons according to the flexibility of
the ligands being evaluated. The average RMSD value of our program is much better
than others, indicating that our program is superior for molecular docking at this level
of rotatable bond count.

4.3 Docking speed

Docking speed is a critical issue in the application of a docking method, especially
in virtual screening [31]. Unfortunately, detailed timing data were not published in
the benchmarking study. And direct comparison of docking speed is somewhat pro-
blematic because of differences in hardware and methodology. Here, we can offer the
docking time for our method. According to the docking results, docking per molecule
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Fig. 1 Comparison of RMSD (heavy atoms) of the solution poses among different programs

Table 5 Comparisons with Glide, GOLD, FlexX, and DOCK6 for RMSD values of ligands with varying
numbers of rotatable bonds

Rotatable bonds in the ligands Average RMSD
(complexes)

Coarse-scale Refined-scale Glide GOLD FlexX DOCK6

0–4(19) 1.15 0.69 1.22 1.62 1.72 1.53
5–9 (22) 1.99 1.07 1.82 2.60 4.29 2.30
10–14 (5) 2.05 0.79 0.89 1.82 4.98 3.28
15–19 (2) 0.60 1.04 7.11 10.38 11.24 6.62
20–24 (2) 8.61 2.44 5.43 5.19 11.45 5.58
25–29 (2) 9.72 6.68 10.08 2.00 12.24 1.51
Total (52) 2.24 1.10 2.19 2.75 4.47 2.58

needs 200–500s for refined-docking method on a SGI Fuel workstation. The average
time of docking a ligand for above data set is about 386.68s.

In summary, we have introduced the concept of residue groups and presented
a multi-scale optimization mode. Then an improved genetic algorithm for flexible
molecular docking has been developed. Based on the model and algorithm, we have
developed a new docking program. Compared to other related programs, the docking
results for our program are more accurate with respect to the RMSD of the docked
ligands. Furthermore, our calculations converge rapidly and steadily. However, certain
aspects of this program still require improvement, such as the scoring functions and
optimization algorithms. This is the focus of our future research.
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